Ant colony optimization for learning Bayesian networks

نویسندگان

  • Luis M. de Campos
  • Juan M. Fernández-Luna
  • José A. Gámez
  • Jose Miguel Puerta
چکیده

One important approach to learning Bayesian networks (BNs) from data uses a scoring metric to evaluate the fitness of any given candidate network for the data base, and applies a search procedure to explore the set of candidate networks. The most usual search methods are greedy hill climbing, either deterministic or stochastic, although other techniques have also been used. In this paper we propose a new algorithm for learning BNs based on a recently introduced metaheuristic, which has been successfully applied to solve a variety of combinatorial optimization problems: ant colony optimization (ACO). We describe all the elements necessary to tackle our learning problem using this metaheuristic, and experimentally compare the performance of our ACObased algorithm with other algorithms used in the literature. The experimental work is carried out using three different domains: ALARM, INSURANCE and BOBLO. 2002 Elsevier Science Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

A hybrid method for learning Bayesian networks based on ant colony optimization

As a powerful formalism, Bayesian networks play an increasingly important role in the Uncertainty Field. This paper proposes a hybrid method to discover the knowledge represented in Bayesian networks. The hybridmethod combines dependency analysis, ant colony optimization (ACO), and the simulated annealing strategy. Firstly, the new method uses order-0 independence tests with a self-adjusting th...

متن کامل

Methods to Accelerate the Learning of Bayesian Network Structures

Bayesian networks have become a standard technique in the representation of uncertain knowledge. This paper proposes methods that can accelerate the learning of a Bayesian network structure from a data set. These methods are applicable when learning an equivalence class of Bayesian network structures whilst using a score and search strategy. They work by constraining the number of validity test...

متن کامل

Learning Bayesian Network Equivalence Classes with Ant Colony Optimization

Bayesian networks are a useful tool in the representation of uncertain knowledge. This paper proposes a new algorithm called ACO-E, to learn the structure of a Bayesian network. It does this by conducting a search through the space of equivalence classes of Bayesian networks using Ant Colony Optimization (ACO). To this end, two novel extensions of traditional ACO techniques are proposed and imp...

متن کامل

Using Ant Colony Optimization in Learning Bayesian Network Equivalence Classes

Bayesian networks are a useful tool in the representation of uncertain knowledge. This paper proposes a new algorithm to learn the structure of a Bayesian network. It does this by conducting a search through the space of equivalence classes of Bayesian networks using Ant Colony Optimization (ACO). To this end, two novel extensions of traditional ACO techniques are proposed and implemented. Firs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2002